
CS103 Handout 44

Spring 2017 May 31, 2017

Practice CS103 Final Exam III

We strongly recommend that you work through this exam under realistic conditions rather
than just flipping through the problems and seeing what they look like. Setting aside three
hours in a quiet space with your notes and making a good honest effort to solve all the prob-
lems is one of the single best things you can do to prepare for this exam. It will give you
practice working under time pressure and give you an honest sense of where you stand and
what you need to get some more practice with.

This practice final exam is essentially the final exam from Fall 2015, with a few minor modifica-
tions (some of the problems we asked here got converted to problem set questions, so we replaced
them with other exam questions) and others covered topics that have since be dropped from CS103
(namely, using self-reference to prove unrecognizability). With the exception of Q5.ii, every ques-
tion here has appeared on some CS103 exam in the past.

The exam policies are the same for the midterms – closed-book, closed-computer, limited note
(one double-sided sheet of 8.5” × 11” paper decorated however you'd like).

You have three hours to complete this exam. There are 48 total points.

Question Points Graders

(1) Logic and Relations / 6

(2) Graphs and Sets / 6

(3) Induction and Cardinality / 6

(4) Regular and Context-Free Languages / 12

(5) R and RE Languages / 14

(6) P and NP Languages / 4

2 / 15

Problem One: Logic and Relations (6 Points)
Suppose that you want to prove the implication P → Q. Here are two possible routes you can take:

• Prove the implication by contradiction.

• Take the contrapositive of the implication, then prove the contrapositive by contradiction.

It turns out that these two proof approaches are completely equivalent to one another.

i. (2 Points) State, in propositional logic, which statements you will end up assuming if you
were to use each of the above proof approaches, then briefly explain why they're equivalent.

3 / 15

ii. (4 Points) Below is a drawing of a binary relation R over a set of people A:

For each of the following first-order logic statements about R, decide whether that state-
ment is true or false. No justification is required, and there is no penalty for an incorrect
guess.

1. ∀p ∈ A. ∃q ∈ A. pRq

☐ True ☐ False

2. ∃p ∈ A. ∀q ∈ A. pRq

☐ True ☐ False

3. ∃p ∈ A. (pRp → ∀q ∈ A. qRq)

☐ True ☐ False

4. ¬∀p ∈ A. ∀q ∈ A. (p ≠ q → ∃r ∈ A. (pRr ∧ qRr))

☐ True ☐ False

4 / 15

Problem Two: Graphs and Sets (6 Points)
Recently, there's been a major development in complexity theory: an “almost” efficient algorithm
for the graph isomorphism problem. The algorithm relies on a special class of graphs that are the
focus of this problem.

The triangular graph of order n, denoted Tₙ, is a graph defined as follows. Begin with the set
{1, 2, 3, …, n}. The nodes in Tₙ are the two-element subsets of {1, 2, 3, …, n}, and there's an
edge between any two sets that have exactly one element in common. For example, below are the
graphs T₃ and T₄:

Recall from Problem Set Four that an independent set in an undirected graph G = (V, E) is a set
I ⊆ V such that if x ∈ I and y ∈ I, then {x, y} ∉ E. Intuitively, an independent set in G is a set of
nodes where no two nodes in I are adjacent. The independence number of a graph G, denoted
α(G), is the size of the largest independent set in G.

Prove that if n ∈ ℕ and n ≥ 1, then α(T2n) = n. (Hint: You need to prove two separate results: first,
that there's an independent set of size n in T2n; second, that no larger independent set exists in T2n.)

5 / 15

(Extra space for your answer to Problem Two, if you need it.)

6 / 15

Problem Three: Induction and Cardinality (6 Points)
Consider the following series:

–1 + 2 – 3 + 4 – 5 + 6 – 7 + 8 – 9 + 10 – 11 + 12 – 13 + 14 – 15 …

We can think about evaluating larger and larger number of terms in the summation. For example,
the sum of the first five terms is –1 + 2 – 3 + 4 – 5 = -3, and the sum of the first eight terms works
out to –1 + 2 – 3 + 4 – 5 + 6 – 7 + 8 = 4. For notational simplicity, let's define An to be the sum of
the first n terms in the summation. For example, A0 is the sum of the first zero terms in the summa-
tion (that's the empty sum, which is zero). A₁ is the sum of the first term (-1), A₂ is the sum of the
first two terms (-1 + 2 = 1), A3 is the sum of the first three terms (-1 + 2 – 3 = -2), etc.

When we covered cardinality in lecture, we gave the following piecewise function as an example of
a bijection f : ℕ → ℤ:

f (n)={
n
2

if n is even

−
n+1

2
otherwise

It turns out that this function is closely connected to the above series. Specifically, for every natural
number n, the following is true:

An = f(n)

In other words, you can form a bijection from ℕ to ℤ by considering longer and longer alternating
sums of the natural numbers. Weird, isn't it?

Prove by induction on n that if n ∈ ℕ, then An = f(n).

7 / 15

(Extra space for your answer to Problem Three, if you need it.)

8 / 15

Problem Four: Regular and Context-Free Languages (12 Points)
Let Σ = {a, b} and consider the following languages L₁ and L₂ over Σ:

L₁ = { w ∈ Σ* | w doesn't contain bb as a substring }

L₂ = { w ∈ Σ* | |w| ≥ 3 and the third-to-last character of w is an a }

This problem concerns the language L₁ ∩ L₂. As an example, the strings aaa, baaba, and bababa
are all in L₁ ∩ L₂, and the strings ε, ba, abb, bbaab, and bab are all not in L₁ ∩ L₂.

i. (3 Points) Design an NFA for L₁ ∩ L₂. No justification is necessary.

ii. (3 Points) Write a regular expression for L₁ ∩ L₂. No justification is necessary.

9 / 15

RNA strands consist of strings of nucleotides, molecules which encode genetic information. Com-
putational biologists typically represent each RNA strand as a string made from four different let-
ters, A, C, G, and U, each of which represents one of the four possible nucleotides.

Each of the the four nucleotides has an affinity for a specific other nucleotide. Specifically:

A has an affinity for U (and vice-versa) C has an affinity for G (and vice-versa)

This can cause RNA strands to fold over and bind with themselves. Consider this RNA strand:

G A U U A C A CUAAUGG

If you perfectly fold this RNA strand in half, you get the following:

G A U U A C A

C U A A U G G

G A U U A C A

C U A A U G G

Notice that each pair of nucleotides – except for the A and the G on the far right – are attracted to
the corresponding nucleotide on the other side of the RNA strand. Because of the natural affinities
of the nucleotides in the RNA strand, the RNA strand will be held in this shape. This is an exam-
ple of an RNA hairpin, a structure with important biological roles.

For the purposes of this problem, we'll say that an RNA strand forms a hairpin if

• it has even length (so that it can be cleanly folded in half);

• it has length at least four (there is at least one pair holding the hairpin shut); and

• all of its nucleotides, except for the middle two, have an affinity for its corresponding nu-
cleotide when folded over. (The middle two nucleotides in a hairpin might coincidentally
have an affinity for one another, but it's not required. For example, CAUG forms a hairpin.)

Let Σ = {a, c, g, u} and let LRNA = { w ∈ Σ* | w represents an RNA strand that forms a hairpin }.
For example, the strings gacccguc, guac, uuuuuaaaaa, and ccaaccuugg are all in LRNA, but the
strings au, aaaacuuuu, ggc, and guuuuaaaag are all not in LRNA.

iii. (3 Points) Write a context-free grammar for LRNA. It should fit into the space below.

10 / 15

iv. (4 Points) Use the Myhill-Nerode theorem to prove that the language LRNA from part (ii) of
this problem is not regular. Since this language imposes a lot of requirements on the strings
it contains, if in the course of your proof you want to claim that a particular string is or is
not in LRNA, please articulate clearly why the string does or does not meet all of the require-
ments of strings in LRNA.

11 / 15

Problem Five: R and RE Languages (14 Points)
Consider the following TM, which we'll call TM₆:

Here, qstart is the start state, and qacc is the accepting state. As usual, we assume that all missing tran-
sitions implicitly cause M to reject.

TM₆'s input alphabet is Σ = {a, b} and its tape alphabet is Γ = {a, b, ×, ☐}.

i. (3 Points) Fill in the following blank to let us know what the language of TM₆ is. You may
find it useful to run this TM on a few small sample inputs to get a feel for how it works. No
justification is necessary.

ℒ(TM₆) = { w ∈ Σ* | __ }

12 / 15

Let Σ be an arbitrary alphabet and consider the following language:

AALL = { ⟨M⟩ | M is a TM and ℒ(M) = Σ* }

In other words, AALL is the language of all descriptions of TMs that accept every string.

ii. (5 Points) Prove that AALL ∉ R.

13 / 15

(Extra space for your answer to Problem 5.ii, if you need it.)

14 / 15

iii. (6 Points) Below is a Venn diagram showing the overlap of different classes of languages
we've studied so far. We have also provided you a list of numbered languages. For each of
those languages, draw where in the Venn diagram that language belongs. As an example,
we've indicated where Language 1 and Language 2 should go. No proofs or justifications
are necessary, and there is no penalty for an incorrect guess.

1. Σ*

2. LD

3. { w ∈ {a, b}* | |w| ≥ 100 and the first 50 characters of w are the same as the last 50
 characters of w }

4. { ⟨M₁, M₂, M₃⟩ | M₁, M₂, and M₃ are TMs over the same alphabet Σ and every string in Σ*
 belongs to exactly one of ℒ(M₁), ℒ(M₂), or ℒ(M₃) }

5. HALT – ATM

6. ATM – HALT

7. { ⟨V, w⟩ | V is a TM and there is a string c such that V accepts ⟨w, c⟩ }

8. { w ∈ {r, d}* | w has more r's than d's }

15 / 15

Problem Six: P and NP Languages (4 Points)
Below is a series of four statements. For each statement, decide whether it's true or false. No justifi-
cation is necessary. There is no penalty for an incorrect guess.

i. If P = NP, there are no NP-complete problems in P.

☐ True ☐ False

ii. If P = NP, there are no NP-hard problems in P.

☐ True ☐ False

iii. If P ≠ NP, there are no NP-complete problems in P.

☐ True ☐ False

iv. If P ≠ NP, there are no NP-hard problems in P.

☐ True ☐ False

We have one final question for you: do you think P = NP? Let us know in the space below. There
are no right or wrong answers to this question – we're honestly curious to hear your opinion!

☐ I think P = NP ☐ I think P ≠ NP

